

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Experiments Analysis Optimizations

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Preventing Catastrophic Interference with Meaningful Representations

Jordi Bieger

April 15, 2009

Programme

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Descriptio

Appenine

Optimizations

Discussion

Questions

Introduction

- Neural Networks
- Representation
- Multiple Tasks
- Static Meaningful Representation Learning
 - Description
 - Experiments
 - Analysis
 - Optimizations
- Discussion
- Questions

Programme

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction

Neural Networks Representation Multiple Tasks

SMRL

Descriptio

Experimer

Optimization

Discussion

Questions

Introduction

- Neural Networks
- Representation
- Multiple Tasks

Static Meaningful Representation Learning

- Description
- Experiments
- Analysis
- Optimizations
- Discussion
- Questions

3

イロト イポト イヨト イヨト

Introduction

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction

Neural Networks Representation Multiple Tasks

SMRL

Description

Experiment

Optimizations

Discussion

Questions

• Artificial Neural Networks (ANNs) are loosely based on neural mechanisms in the brain.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Standard Multi-Layer Perceptrons (MLPs) fail to model the brain's ability to sequentially learn multiple tasks.
- I propose a simple solution called "Static Meaningful Representation Learning".

Multi-Layer Perceptrons

Representation

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Introduction Neural Networks Representation Multiple Tasks

SMRL

Experiment:

Analysis

Optimizations

Discussion

Questions

- Situation needs to be encoded into a representation the network "understands".
- These representations are often arbitrary.

Representation

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description Experiments

-

Discussion

а

Z

Multiple tasks

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Analysis

Optimizations

Discussion

Questions

- Network needs to be told what task to do.
- Accomplished by adding extra task representation nodes.
- Action words have task relevant representations in human brains.
- Sequential learning causes catatrophic interference.

Tasks

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Experiment

Analysis

Optimizations

Discussion

Questions

Inp	uts	NONE	AND	NIF	1st	Just2	2nd	XOR	OR	NOR	IFF	¬2nd	¬Just2	¬1sт	IF	NAND	ALL
-	-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	+	+
-	+	-	-	-	-	+	+	+	+	-	-	-	-	+	+	+	+
+	-	-	-	+	+	-	-	+	+	-	-	+	+	-	-	+	+
+	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
bin	ary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
1	ŧ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Programme

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Analysis

Optimizations

Discussion

Questions

Introduction

- Neural Networks
- Representation
- Multiple Tasks

Static Meaningful Representation Learning

- Description
- Experiments
- Analysis
- Optimizations
- Discussion
- Questions

イロト イポト イヨト イヨト 三日

Static Meaningful Representation Learning

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description Experiment

Analysis

Optimizations

Discussion

Questions

- Static Meaningful Representation Learning (SMRL)
 - Initial knowledge acquisition phase
 - Fix all weights in the network
 - Novelty learning phase
- Uses Parametric Bias (PB) nodes for learning meaningful task representations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Network Types

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description Experiments Analysis Optimizations

Questions

Implicit PB Fixed

Fixed Weight IPB

Explicit PB

ヘロト 人間 とく ヨン くきとう

ж

Results

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Introduction Neural Networks Representation Multiple Tasks

Description Experiments

Optimization

Discussion

Questions

# Hidden Nodes	# PB Nodes	IPB	FWIPB	EPB
2	1	24.9%	26.4%	n/a
4	1	25.6%	26.0%	n/a
2	2	30.4%	31.6%	32.2%
4	2	36.3%	36.7%	n/a
6	2	38.6%	40.5%	n/a
6	6	-	-	54.9%
2+4	2	30.8%	31.6%	32.2%
4+4	2	34.0%	35.7%	n/a
4+4	4	-	-	38.7%
4	4	41.8%	42.3%	42.1%

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Results

Sequentially Learning Multiple Tasks in Artificial Neural Networks Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks SMRL

Experiments Analysis Optimizations Discussion

Questions

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● のへで

Difficulty

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Cxperimer

.....

Optimizations

Discussion

Questions

Network has to be "smart" enough.

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 − のへで

Similarity

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL Description

Analysis

Optimizations

Discussion

Questions

Similarity depends on effect of inputs on target outputs

- Parallel: arrows in the same direction
- Similar: arrows in roughly the same direction (< 90°)

Results

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Experiments

Analysis

Optimizations

Discussion

Questions

Network	# Hidden	# PB					
Туре	Nodes	Nodes	Difficulty	Parallel	Similarity	Prodigy	Overall
IPB	4	2	77	98	72	66	36
IPB	4	4	88	100	79	79	42
FWIPB	4	2	81	98	72	69	37
FWIPB	4	4	91	100	79	88	42
EPB	2	2	73	100	68	51	32
EPB	4	4	87	100	80	75	42

Arctangent

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

. . .

Optimization

Discussion

Questions

Network	# Hidden	# PB					
Туре	Nodes	Nodes	Difficulty	Parallel	Similarity	Prodigy	Overall
IPB	4	2	83 (+6)	100 (+2)	70 (-2)	73 (+7)	37 (+1)
IPB	4	4	90 (+2)	100 (0)	75 (-4)	83 (+4)	40 (-1)
FWIPB	4	2	87 (+6)	100 (+1)	72 (0)	80 (+11)	38 (+1)
FWIPB	4	4	96 (+5)	100 (+0)	78 (-1)	93 (+5)	43 (+0)
EPB	2	2	77 (+4)	100 (0)	64 (-4)	57 (+6)	32 (0)
EPB	4	4	96 (+9)	100 (0)	80 (-1)	93 (+18)	44 (+2)

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Gaussian

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

. . .

Optimization

Discussion

Questions

Network	# Hidden	# PB					
Туре	Nodes	Nodes	Difficulty	Parallel	Similarity	Prodigy	Overall
IPB	4	2	74 (-3)	86 (-11)	78 (+6)	88 (+22)	73 (+37)
IPB	4	4	87 (-1)	90 (-10)	89 (+9)	97 (+18)	84 (+42)
FWIPB	4	2	74 (-6)	85 (-14)	78 (+6)	86 (+16)	74 (+37)
FWIPB	4	4	82 (-9)	91 (-9)	86 (+7)	92 (+4)	81 (+39)
EPB	2	2	65 (-8)	83 (-17)	69 (+1)	76 (+25)	60 (+28)
EPB	4	4	88 (+1)	95 (-5)	94 (+14)	97 (+22)	89 (+47)

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 − のへで

Gaussian

Introduction Neural Networks Representation Multiple Tasks

Description Experiments Analysis Optimizations Discussion

Extra connections

Sequentially Learning Multiple Tasks in Artificial Neural Networks

ntroduction Neural Networks Representation Multiple Tasks

SMRL

Experiments Analysis Optimization

Questions

(日)(御)(王)(王)(王)

Extra connections

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description Experiment

Analysis

Optimizations

Discussion

Questions

Network	# Hidden	# PB					
Туре	Nodes	Nodes	Difficulty	Parallel	Similarity	Prodigy	Overall
IPB	4	2	83 (+6)	100 (+2)	70 (-2)	74 (+8)	39 (+3)
IPB	4+4	2	81 (+6)	99 (0)	71 (-3)	74 (+16)	39 (+5)
IPB	4	4	94 (+6)	100 (0)	74 (-5)	90 (+11)	43 (+1)
FWIPB	4	2	83 (+3)	100 (+1)	73 (+2)	73 (+4)	40 (+3)
FWIPB	4+4	2	85 (+5)	99 (+0)	76 (+0)	78 (+13)	41 (+5)
FWIPB	4	4	96 (+5)	100 (+0)	80 (+1)	93 (+5)	44 (+2)
EPB	2	3	84 (+11)	100 (0)	69 (+1)	70 (+19)	38 (+6)
EPB	4	5	91 (+4)	100 (0)	73 (-7)	85 (+10)	43 (+1)
EPB	4+4	9	95 (+9)	100 (0)	80 (-1)	91 (+19)	47 (+8)

▲□▶▲圖▶★≧▶★≧▶ ≧ の�?

Extra representation weights

Sequentially Learning Multiple Tasks in Artificial Neural Networks

oorar Brogor

ntroduction Neural Networks Representation Multiple Tasks

SMRL

Experiment: Analysis Optimization

Discussion Questions

Extra representation weights

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description

Analysis

Optimizations

Discussion

Questions

Network	# Hidden	# PB					
Туре	Nodes	Nodes	Difficulty	Parallel	Similarity	Prodigy	Overall
IPB	4	2	85 (+8)	98 (+0)	74 (+2)	78 (+12)	41 (+5)
IPB	4+4	2	80 (+5)	99 (-1)	74 (0)	70 (+12)	39 (+5)
IPB	4	4	97 (+9)	100 (0)	87 (+8)	97 (+18)	53 (+11)
FWIPB	4	2	84 (+4)	99 (+1)	77 (+5)	77 (+8)	41 (+5)
FWIPB	4+4	2	83 (+3)	99 (0)	78 (+3)	72 (+7)	40 (+5)
FWIPB	4	4	95 (+4)	100 (0)	90 (+11)	93 (+5)	49 (+7)
EPB	2	3	84 (+11)	100 (0)	74 (+6)	74 (+23)	41 (+9)
EPB	4	5	93 (+7)	100 (0)	89 (+9)	89 (+14)	53 (+11)
EPB	4+4	9	96 (+11)	100 (0)	92 (+11)	92 (+20)	59 (+20)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Programme

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Descriptio

Experiment

Optimization

Discussion

Questions

- Neural Networks
- Representation
- Multiple Tasks

Static Meaningful Representation Learning

- Description
- Experiments
- Analysis
- Optimizations
- Discussion
 - Questions

3

イロト イポト イヨト イヨト

Evaluation

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Description Experiments

Anaiysis

Discussion

Questions

Advantages

- Simple
- Sequential learning of multiple tasks
- No catastrophic interference
- Meaningful representations

Disadvantages

- Weights don't change
- Unproven for more interesting task domains

Conclusion

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Introduction Neural Networks

Multiple Tasks

SMRL

Description Experiments

Ontimizati

Discussion

Questions

- Meaningful representations are powerful
- Combination with other techniques desirable

イロト (目) (ヨ) (ヨ) (の) (つ)

Further research required

Programme

Sequentially Learning Multiple Tasks in Artificial Neural Networks

Jordi Bieger

Introduction Neural Networks Representation Multiple Tasks

SMRL

Descriptio

Analysis

Optimizations

Discussion

Questions

- Neural Networks
- Representation
- Multiple Tasks

Static Meaningful Representation Learning

- Description
- Experiments
- Analysis
- Optimizations
- Discussion
- Questions

3

イロト イポト イヨト イヨト